138 research outputs found

    Towards Logical Specification of Statistical Machine Learning

    Full text link
    We introduce a logical approach to formalizing statistical properties of machine learning. Specifically, we propose a formal model for statistical classification based on a Kripke model, and formalize various notions of classification performance, robustness, and fairness of classifiers by using epistemic logic. Then we show some relationships among properties of classifiers and those between classification performance and robustness, which suggests robustness-related properties that have not been formalized in the literature as far as we know. To formalize fairness properties, we define a notion of counterfactual knowledge and show techniques to formalize conditional indistinguishability by using counterfactual epistemic operators. As far as we know, this is the first work that uses logical formulas to express statistical properties of machine learning, and that provides epistemic (resp. counterfactually epistemic) views on robustness (resp. fairness) of classifiers.Comment: SEFM'19 conference paper (full version with errors corrected

    A weakness measure for GR(1) formulae

    Get PDF
    In spite of the theoretical and algorithmic developments for system synthesis in recent years, little effort has been dedicated to quantifying the quality of the specifications used for synthesis. When dealing with unrealizable specifications, finding the weakest environment assumptions that would ensure realizability is typically a desirable property; in such context the weakness of the assumptions is a major quality parameter. The question of whether one assumption is weaker than another is commonly interpreted using implication or, equivalently, language inclusion. However, this interpretation does not provide any further insight into the weakness of assumptions when implication does not hold. To our knowledge, the only measure that is capable of comparing two formulae in this case is entropy, but even it fails to provide a sufficiently refined notion of weakness in case of GR(1) formulae, a subset of linear temporal logic formulae which is of particular interest in controller synthesis. In this paper we propose a more refined measure of weakness based on the Hausdorff dimension, a concept that captures the notion of size of the omega-language satisfying a linear temporal logic formula. We identify the conditions under which this measure is guaranteed to distinguish between weaker and stronger GR(1) formulae. We evaluate our proposed weakness measure in the context of computing GR(1) assumptions refinements

    Modeling for verification

    No full text

    Cyber-Physical Systems Education: Explorations and Dreams

    No full text

    Toward verified artificial intelligence

    No full text
    • …
    corecore